
MATHEMATIQ

The Newsletter of MathSIG
(Special Interest Group within Mensa Austria)

Special Edition on Theoretical Computer Science

http://www.hugi.scene.org/adok/mensa/mathsig/



Editorial

Dear Readers:

Welcome to a special edition of MATHEMATIQ. On popular request I have trans-
lated several articles of mine that deal with theoretical computer science to the
English language so that members of Mensa International and other people inter-
ested in this branch of science will be able to read it.

The articles in this issue introduce laymen to the fascinating area of theoretical
computer science and two particular open problems. I focused on theoretical com-
puter science during my studies at the Vienna University of Technology and received
a very good training in this area. Altruistic as I am, I do not keep this knowledge
to myself but try to convey it to others as well for the sake of advancement of
education and science.

MATHEMATIQ is the official newsletter of the MathSIG, a special interest group
within Mensa Austria. Regularly it issues in the German language, which is the
official language of the Republic of Austria (no kangaroos in Austria!).

Note: All authors are responsible for the contents of their respective articles. The
articles in MATHEMATIQ solely represent the opinions of the individual authors and
not the opinion of Mensa as a whole. Submission of contributions implies agreement
to publication in MATHEMATIQ.

Enjoy reading and studying!

Claus D. Volko, cdvolko@gmail.com

1



Formal Languages

A formal language is a set of words. This set can be either finite or infinite. If
a formal language is finite, it can be specified by listing all words that belong to
it. This is not possible if it is infinite. How can an infinite formal language be de-
fined? A formalism is required. The type of formalism depends on the type of the
language. Unfortunately no formalism is known that would enable one to specify
any language. But for special sets of languages there are diverse elegant formalisms.

The sets of formal languages form a hierarchy. This hierarchy is named after the
American linguist Noam Chomsky. Higher languages are proper subsets of lower
languages in this hierarchy. There are the following relations:

Regular languages
⊂ Context-free languages
⊂ Context-sensitive languages
⊂ Recursive languages
⊂ Recursively enumerable languages
⊂ General languages,

Recursive langagues
⊂ Co-recursively enumerable languages
⊂ General languages.

All finite languages are regular. Moreover, languages that allow an unlimited rep-
etition of parts of a word belong to the set of regular languages as well. Regular
languages can be defined by regular expressions, that is strings which in addition
to literals (characters that belong to the word) may also contain parentheses and
two peculiar symbols. One of these symbols is usually expressed as the plus sign,
the other as the multiplication sign. The plus sign signifies that the preceding part
of the word may be omitted. Due to this, the regular expression ab+c stands for
the two words ac and abc. The plus sign is usually only applied to the previous
literals, except in case several literals were embraced by a parenthesis, in which case
the plus sign relates to the part of the word between the parentheses. The regu-
lar expression a(bc)+d for example stands for the two words ad and abcd. With
the multiplication sign it is quite similar; its meaning is that the marked part of
the word can be repeated an unlimited number of times. The regular expression
a(bc)*d creates an infinite set of words, containing the words ad, abcd, abcbcd,
abcbcbcd, abcbcbcbcd and infinitely many more.

Some readers might raise the question how this is related to computer science;
well, actually formal languages are a central concept of theoretical computer sci-
ence. Each formal language corresponds to a decision problem: Does a particular
word belong to the formal language or not? The belonging to a certain set of formal
languages can be decided by a computational model, a theoretical formalism that
mimicks the behaviour of a computer. In general any decision problem that can

2



be solved by a computer can also be solved by a Turing machine and vice versa.
However, a Turing machine is not able to decide any conceivable language - it is
only suitable for recursively enumerable languages. There is no known formalism
for more general languages. I will talk about Turing machines later on, but now let
us come back to regular languages.

Regular languages can be modelled as finite automata. An automaton is a set
of states with defined transitions. There is exactly one starting state and at least
one finishing (accepting) state. Any automaton begins at the starting state and
reads the first literal. If there is a transition from the current state to another state
with this transition accepting the literal, the transition to the new state can be
made. Otherwise execution stops. A word is considered an element of the given
formal language if and only if all literals have been accepted in the given order
and a finishing state has been reached this way. Note that there may be more
than one transition from the current state that accepts a given literal. If there are
several different transitions accepting the same input, such an automaton is called
non-deterministic. If such an automaton is used to check if a word is in a given
language, all possible paths of execution must be considered; it is enough if a single
path leads to an accepting state. The other type of automata is called deterministic;
with deterministic finite automata, it is sufficient to execute them once to solve a
decision problem. As the intelligent reader might suspect, deterministic automata
are usually more complex than non-deterministic ones; they consist of more states.
Is it possible to construct a deterministic automaton for any decision problem that
can be solved by a non-deterministic automaton? Yes, it is. Since a deterministic
automaton is actually a special type of a non-deterministic automaton, the oppo-
site relation applies as well. Deterministic and non-deterministic automata have the
same strength of expression. In many cases, however, it is easier to construct a
non-deterministic finite automaton that accepts a given language.

The next level in the hierarchy is occupied by context-free languages. These lan-
guages can be specified by context-free grammars. There are various notations
for these, one of the better known ones being the Extended Backus-Naur-Form
(EBNF). It has the following syntax:

rule → literal* rule* literal*

Again the multiplication sign means that the preceding element can be repeated
an unlimited time, including zero times. This enables one to define rules such as

A → abc,

which means that any occurence of the rule A may be replaced by the string abc,
but also rules such as

A → a B de,
B → B c,

3



which mean that B may be replaced by an arbitrary number of literals c and A
by literal a, followed by rule B and literals de. What distinguishes this from regular
languages is that several possibilities can be defined for each rule. It holds:

A → B|C

is equal to

A → B,
A → C.

So it is possible to choose an option, and this makes it possible to describe lan-
guages that cannot be defined by regular expressions. For instance, the context-free
grammar

A → a A b|ε,

where ε signifies the empty word, enables one to form the following words: ε,
ab, aabb, aaabbb etc. There is no regular expression for this language. For this
reason this is not a regular, but a context-free language.

Context-free languages can be defined by automata as well. For this purpose push-
down automata are used. These work with a stack, that is a data structure that
enables one to push anything onto the top of the stack any time and to derive
(“pop”) the upmost element of the stack, by which this element is removed from
the stack, but not to directly access any other element of the stack. Stacks are also
called LIFO memories (last in, first out). A pushdown automaton uses the topmost
value of the stack as an additional criterion to decide whether a particular transition
is allowed. Moreover, each transition may push a new element onto the top of the
stack. With such an automaton it is possible to decide whether a given word is an
element of the context-free language which is represented by that automaton.

It is easy to show that such an automaton is able to model a context-free lan-
guage: If the right-hand side of a rule contains only literal, the stack is not needed.
If there are references to other rules on the right-hand side, the stack can be used to
save where the automaton should continue after processing the rule that is referred
to. For instance, if the rule A contains a reference to the rule B, the automaton
processes the word following rule A until the reference is reached. Then it saves on
the stack where it must continue as soon as the processing of the rule B is finished,
and goes on by processing the rule B. Once that is finished, the automaton looks
up on the stack to see where it must continue. After finishing the processing of the
rule A it realizes that the stack is empty and ends at an accepting state.

What is missing is the proof that such a pushdown automaton is only able to
process context-free languages and not also languages that appear in the next level

4



of the Chomsky hierarchy. Of course it is possible to show that a pushdown automa-
ton is not able to process context-sensitive languages which are not context-free at
the same time. Context-sensitive languages can be defined by grammars in which
literals may also appear on the left-hand side, for example

a A b → b C d.

I leave the proof to the readers as an exercise. A hint: It is related to the se-
quential processing of the input (one literal after the other in the very order they
appear in the input word). Why may this be a problem with context-sensitive lan-
guages? Would it, in theory, be possible using pushdown automata to jump back
to literals that have already been processed? Why does this not suffice to define
context-sensitive languages by means of pushdown automata?

A formalism that allows to jump back to already processed literals while saving
the additional pieces of information needed to process context-sensitive languages
ia Turing machines. Turing machines are far more powerful than automata. They
can have different states, process the input from left to right as well as in the other
direction, and overwrite the input. A Turing machine is represented by states and
transitions just like an automaton, exactly one state being the starting state and
at least one state being a finishing (accepting) state. The input word is accepted
when such a finishing state is reached. Which transitions are possible depends on
the current state on the one hand and on the literal located at the current position
of the input/output head on the other. Each transition not only defines the follow-
ing state but also the value the current input data element is overwritten with and
the direction where the input/output head will move next.

Turing machines allow to describe more general languages than just context-sensitive
ones. Turing machines which have to either accept or reject an input but must not
enter an infinite loop are also called Turing deciders. Turing deciders represent re-
cursive (also called decidable) languages. If you allow a Turing machine to enter an
infinite loop if the word does not belong to the language but demand from it that it
accepts the word in any other case, the set of languages that can be represented is
called the set of recursively enumerable or semi-decidable languages. By contrast,
if the Turing machine must always reject the word if it is not in the language but
may either accept or enter an infinite loop otherwise, these languages are called
co-recursively enumerable; and the set of recursive languages is the intersection of
recursively enumerable and co-recursively enumerable languages.

Claus D. Volko, cdvolko@gmail.com

5



Gödel and the Limits of Computability

Kurt Gödel showed in the first half of the 20th century that a formal system in
which mathematical and logical statements can be expressed must be either incom-
plete or inconsistent (First Incompleteness Theorem). Furthermore, he stated that
a consequence of a formal system being consistent is that this consistency is not
provable within this very formal system (Second Incompleteness Theorem).

Both theorems can be easily deduced using computability theory when consider-
ing that completeness basically means that each statement must be decidable and
consistency that whenever a mechanism associated with the formal system (e.g. a
Turing machine) comes to the conclusion that a statement is provable, this state-
ment must indeed be provable, and when the mechanism comes to the conclusion
that a statement is not provable, this statement must indeed not be provable. Para-
doxical statements having the property that the assumption that they are provable
leads to the conclusion that they cannot be provable and the opposite assumption
that they are not provable leads to the conclusion that they must be provable can-
not be decided by a consistent system. For this reason consistent systems are not
complete, which is equivalent to the statement that complete systems cannot be
consistent. The Second Incompleteness Theorem in particular can be shown by ar-
guing that a formal language in the sense of Gödel must be recursively enumerable
but must not be recursive in order to be consistent, since recursive languages can-
not be consistent as each statement of a recursive language must be decidable and
paradoxical statements are not decidable. The problem of deciding whether there
is a undecidable statement is itself undecidable.

This is especially relevant to the question of the limits of computability. Gödel
himself believed the human mind to be much more powerful than any computer
since the human mind is able to compute things not computable by a computer. I
believe that it would be interesting in this context to conduct research on detecting
paradoxical statements by a Turing machine. Of course the more general problem
whether a statement is decidable is undecidable itself since it is equal to the so-
called Halting problem, that is the problem whether a Turing machine terminates
on any input or whether there is some input which will lead to an infinite loop.
However, this concerns decidability in general. Paradoxical statements are a partic-
ular subset of the set of statements whose provability cannot be decided. Perhaps it
would be possible to program a computer to work correctly at least with this subset.

If the hypothesis that intelligent reasoning is nothing but a form of computation
is true, this implies that any computer would be able to reason in a way as intelli-
gent as a human being if anything the human mind is able to compute can also be
computed by a computer. Gödel doubted that. It is currently not possible to judge
whether Gödel was right, and if he is really right, maybe this will never be provable
(as it is infinitely more difficult to prove that something is impossible than to prove
that it is possible - cf. the P-NP problem).

Claus D. Volko, cdvolko@gmail.com

6



The P-NP Problem

This being one of the most difficult open problems of computer science, Clay Math-
ematics Institute has announced that it will pay 1 million dollars to the first person
to find the solution.

P and NP are sets of decision problems with particular complexities. That means:
There is an algorithm that solves the decision problem whose execution time does
not exceed a particular limit with respect to the size of the input data. An algorithm
belonging to P will never need more than a polynomial number of steps in terms of
the input data size. By contrast NP means that it is possible to verify a candidate
solution in polynomial time.

P is a subset of NP. The open question is whether it is a proper subset, or whether
the two sets are identical. Most computer scientists believe P is a proper subset of
NP, but they have no idea how to prove it.

If the two sets were identical it would suffice to prove it for a single NP-complete
problem. The set of NP-complete problems is a subset of NP with the property
that any NP-complete problem is at least as hard as any other problem in NP.
One of these problems is the Satisfiability Problem of Propositional Logic (SAT, cf.
Cook-Levin-Theorem). To show that another particular problem is NP-complete, it
is enough to show that it is in NP and that it is at least as hard as SAT. This can
be done by showing that it is possible to reduce SAT to this problem, i.e. show that
an algorithm for this new problem would enable one to solve instances of SAT and
that a SAT solver could be used to solve instances of this new problem. So far, not
a single polynomial algorithm has been found for an NP-complete problem.

Probably P is a proper subset of NP, but how should this be shown? In gen-
eral it seems to be far harder to show that something is not possible than to show
that it is possible (if it is possible).

From time to time, “proofs” are released, but usually errors are found in them
after a short (sometimes longer) while. Interesting enough, some people claim that
the P-NP problem is unsolvable. How should this be judged?

First of all the P-NP problem is not a decision problem, so those publications
that deem the P-NP problem “undecidable” definitely err - but maybe it is just a
matter of terminology. What in theory is possible is to do research on the decid-
ability of a related decision problem, such as the set NP \ P. If and only if this set
is empty, P is equal to NP. I leave it as an exercise to the readers whether NP \ P
is decidable. In any case, it will not help settle the matter since it is irrelevant: If
the set is undecidable, the P-NP problem might be solvable nonetheless, and if it is
decidable, this alone will not bring the solution to the P-NP problem.

Claus D. Volko, cdvolko@gmail.com

7


